
Homework 4: Solutions to exercises not appearing in
Pressley, also 2.3.2, 2.3.4, and 2.3.5

Math 120A

• (2.3.2) We already know that the helix γ(t) = (a cos θ, a sin θ, bθ) with a > 0 has
curvature κ = a

a2+b2
and τ = b

a2+b2
. Since any two curves in R3 with the same nonzero

curvature function and torsion functions are related by direct isometry, it suffices to
show that for any pair of real numbers κ > 0 and τ , there is a pair a > 0 and b such
that κ = a

a2+b2
and τ = b

a2+b2
. We see that τ

κ
= b

a
, so we must have b = τc and a = κc

for some constant c. But then κ = κc
κ2c2+τ2c2

, so c = 1
κ2+τ2

. Ergo if a = κ
κ2+τ2

and
b = τ

τ2+κ2
, the helix γ(t) = (a cos θ, a sin θ, bθ) has constant curvature and torsion κ

and τ . We conclude that all curves with constant curvature and torsion are the images
of circular helices under direct isometry.

• (2.3.4) We know γ(t) is unit-speed and spherical. Without loss of generality, the center
of the sphere is 0 (because if it isn’t we can start by doing a translation). Therefore
γ(t)·γ(t) = r2 where r is the radius of the sphere. Differentiating gives 2γ̇ ·γ = 0. SInce
γ is unit-speed, γ̇ = t, so this says t · γ = 0. Differentiating this second relationship
again gives

t · t + κn · γ = 0

1 + κn · γ = 0

n · γ = −1

κ

We differentiate the last equality again:

(−κt + τb) · γ + n · t =
κ̇

κ2

τb) · γ =
κ̇

κ2

b · γ =
κ̇

κ2τ

Notice this implies that γ(t) = − 1
κ

+ κ̇
κ2τ

n for all t. We differentiate a final time:

−τn · γ + b · t =
d

dt

(
κ̇

κ2τ

)
−τ

(
−1

κ

)
=

d

dt

(
κ̇

κ2τ

)
τ

κ
=

d

dt

(
κ̇

κ2τ

)



This completes the forward direction. Conversely, if this equation holds and ρ = 1
κ
,

σ = 1
τ
, then

d

dt
(ρ2 + (ρ̇σ)2) = 2ρρ̇+ 2ρ̇σ

d

dt
(ρ̇σ)

= 2ρ̇

(
ρ+ σ

d

dt
(ρ̇σ)

)
But ρ+σ d

dt
(ρ̇σ) = 1

κ
+ 1

τ
d
dt

( −κ̇
κ2τ

)
= 0 by equation (2.22). So we conclude that ρ2 +(ρ̇σ)2

is constant, say r2. Now we know ρ2 + (ρ̇σ)2 = r2. So the curve −ρn + (ρ̇σ)b lies on
the sphere of radius r. Differentiating shows it has the same tangent vector as γ, so up
to translation (which just changes the center of the sphere) it is the same curve. Ergo
γ is spherical. A computation shows the relationship holds for Viviani’s Curve.

• (2.3.5) Let γ(t) be our unit-speed curve and Px + a be our direct isometry. Then
if Γ(t) = Pγ(t) + a, we see that Γ′(t) = Pγ′(t), and since P is orthogonal (and in
particular, length-preserving), ||Pγ′(t)|| = 1, so Γ(t) is unit speed. Since both γ and
Γ are unit speed, Γ′(t) = Pγ′(t) is exactly the statement that T = P t; similarly,

Γ′′(t) = Pγ′′(t), so since ||γ′′(t)|| = ||Pγ′′(t)||, we see that N = Γ′′(t)
||Γ′′(t)|| = Pγ′′(t)

||γ′′(t) || = Pn.

Then P t× Pn = det(P )P (t× n) = Pb, so B = Pb.

(To see the last fact, let P be orthogonal and let v1, v2, v3 be the orthonormal
columns of P . Then if P is direct, we have 1 = det(P ) = (v1 × v2) · v3, from the
standard algorithm for computing the derivative by going down the third column.
So in particular the unit vector v1 × v2 is v3, and the columns of P form a right-
handed orthonormal system. Then if a = (a1, a2, a3) and c = (c1, c2, c3), we can
compute the cross-product Pa× Pc = (a1v1 + a2v2 + a3v3)× (b1v1 + b2v2 + b3v3) =
(a1b2 − b1a2)v3 + (a3b1 − b3a1)v2 + (a2b3 − b2a3)v3 = P (a× b).

• (2.3.13) Recall that a curve is a generalized helix if it makes a fixed angle with
some unit vector. Out curve is γ(t) = (eλt cos t, eλt sin t, eλt), with tangent vector
γ̇(t) = (λeλt cos t − eλt sin t, λeλt sin t + eλt cos t, λeλt. Note that this vector has length√

2λ2 + 1eλt. Now if u = (0, 0, 1), then γ̇(t) ·u = λeλt, so if θ is the angle between γ̇(t)

and u, then cos θ =
√

2λ2+1
λ

. We conclude θ is constant.

We also need to check the curvature of γ is nonzero. But note that γ̈(t) = ((λ2 −
1)eλt cos t − 2λeλt sin t, (λ2 − 1)eλt sin t + 2λeλt cos t, λ2eλt), so the first entry of γ̈ × γ̇
is −eλt(λ sin t+ 3λ2 cos t) and the second is (λeλt(λ cos t+ 3λ2 sin t). These two terms
cannot be zero simultaneously, so γ̈ × γ̇ is not the zero vector for any t. Hence γ has
nonzero curvature anywhere.


